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Abstract

Summary: The transformer-based language models, including vanilla transformer, BERT and GPT-3, have achieved
revolutionary breakthroughs in the field of natural language processing (NLP). Since there are inherent similarities
between various biological sequences and natural languages, the remarkable interpretability and adaptability of
these models have prompted a new wave of their application in bioinformatics research. To provide a timely and
comprehensive review, we introduce key developments of transformer-based language models by describing the
detailed structure of transformers and summarize their contribution to a wide range of bioinformatics research from
basic sequence analysis to drug discovery. While transformer-based applications in bioinformatics are diverse and
multifaceted, we identify and discuss the common challenges, including heterogeneity of training data, computa-
tional expense and model interpretability, and opportunities in the context of bioinformatics research. We hope that
the broader community of NLP researchers, bioinformaticians and biologists will be brought together to foster fu-
ture research and development in transformer-based language models, and inspire novel bioinformatics applica-
tions that are unattainable by traditional methods.

Contact: wanwen@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Bioinformatics, an interdisciplinary research field, has become one
of the most influential areas of life science research in a profound
way. It is characterized by the demand to develop and utilize compu-
tational tools and methods to analyze huge amounts of biomedical
data and translate them into knowledge for developing downstream
applications.

In recent years, natural language processing (NLP) (Nadkarni
et al., 2011; Supplementary Table S1), a branch of artificial intelli-
gence, has been increasingly showing a substantial impact in bio-
informatics research fields (Han and Kwoh, 2019), ranging from
DNA/RNA sequence analysis to computational biology (Iuchi et al.,
2021; Zeng et al., 2018). Specifically, NLP technologies, with the
aim to grant computers the ability to understand words and texts
from human beings (Tsujii, 2021), have the potential power to also
understand biological languages. Language models enable com-
puters to analyze the patterns of human language by predicting
words (Adel et al., 2018) (Fig. 1A) and are becoming one of the core
technologies for many NLP tasks, including sentiment analysis
(Schouten and Frasincar, 2016), machine translation (Bahdanau
et al., 2016) and text summarization (Nenkova and McKeown,

2012). The history of leveraging the power of neural networks
(NNs) (Walczak and Cerpa, 2003) in NLP tasks can be tracked back
two decades (Bengio et al., 2003), where a series of word embedding
technologies were proposed to provide a novel representation of text
and achieved superior results (Blacoe and Lapata, 2012; Turian
et al., 2010). For example, Word2Vec (Le and Mikolov, 2014;
Mikolov et al., 2013a, b), which maps one-hot word vectors to dis-
tributed word vectors using a shallow neural network, is one of the
most representative models. Word2vec can utilize either of two
types of model architecture to produce these distributed representa-
tions of words: continuous bag-of-words (CBOW) or continuous
skip-gram. CBOW predicts the current word based on the context
while skip-gram predicts surrounding words given the current word
(Fig. 1B). With the rapid development of deep learning technologies
(LeCun et al., 2015), language models in NLP have continuously
made significant breakthroughs: conventional RNN-based models,
including Bi-RNN (Schuster and Paliwal, 1997), LSTM (Hochreiter
and Schmidhuber, 1997) and GRU (Cho et al., 2014), attempt to en-
code the entire sequence into a finite length vector without paying
more attention to those important works. Although these RNN-
based models are able to learn long-term dependency, they greatly
suffer from vanishing gradient and low-efficiency problems as they
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Fig. 1. The focus of this review article and some classic language models frameworks. (A) Relationships of artificial intelligence, machine learning, natural language processing,

transformer-based language models and bioinformatics. The blue square denotes the focal point of this review article. (B) Two common models in Word2Vec: CBOW

(Continuous Bag-of-Words Model) and Skip-gram (Continuous Skip-gram Model). (C) The structure of transformer model. (D) The structure of BERT model
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sequentially process all past states and compress contextual informa-
tion into a bottleneck with long input sequences (Bengio et al.,
1994; Pascanu et al., 2013). For example, Seq2Seq (Sutskever et al.,
2014), the first encoder–decoder model in machine translation tasks,
supports variable-length inputs and outputs but is still limited by its
infrastructure LSTM. The Transformer (Vaswani et al., 2017)
model was then developed by Google, which completely abandoned
RNN-based network structures, and only used the multi-head atten-
tion mechanism (Fig. 1C). Transformer does not rely on the past
hidden states to capture the dependency on the previous words.
Instead, transformer processes a sentence as a whole to allow for
parallel computing and alleviates the vanishing gradient and per-
formance degradation caused by long-term dependency. In this re-
view article, we will focus on transformer-based language models.

In general, transformer-based language models fall into two
categories: scratch-trained models and pre-trained models. The
scratch-trained models directly train all model parameters from the
beginning using task-specific datasets and often require many itera-
tions to fully converge. For example, Transformer-XL (Dai et al.,
2019) uses relative positional encoding and segmented RNN mech-
anism to model long text; Sparse Transformers (Zhao et al., 2019)
uses only a small number of tokens in the computation of attention
distribution to improve the concentration of attention mechanism;
Reformer (Kitaev et al., 2020) addresses the resource-hungry prob-
lem of the transformer by replacing dot-product attention and using
reversible residual layers; Longformer (Beltagy et al., 2020) pro-
poses sliding windows, dilated sliding windows and global attention
strategies to reduce the complexity of the model. On the other hand,
transformer-based pre-trained models are trained from large
amounts of unlabeled data and then fine-tuned for specific tasks.
Pre-training learns general information from unlabeled data, speeds
up the convergence rate of the target tasks and usually has better
generalization than training parameters from scratch (Han et al.,
2021). For example, GPT-X (Brown et al., 2020; Radford and
Narasimhan, 2018; Radford et al., 2019) proposes unsupervised
pre-training and supervised fine-tuning for the first time; BERT
(Devlin et al., 2019) utilizes bi-directional transformers and mask
mechanism (Fig. 1D) to achieve a deeper understanding of context
than GPT; RoBERTa (Liu et al., 2019b) uses dynamic masking and
has a significant improvement over BERT in terms of model size and
arithmetic power; XLNet (Yang et al., 2019b), which is based on
the Transformer-XL architecture, further introduces permutation
language modeling as an improved training method; ERNIE (Zhang
et al., 2019) adopts a continual learning mechanism, which consists
of two parts: continual construction of pre-training tasks and incre-
mental multi-task learning; ALBERT (Lan et al., 2020) is a mini-
model using cross-layer parameter sharing and paragraph continuity
tasks; T5 (Raffel et al., 2020) is a generic framework that converts
all NLP tasks into Text-to-Text format. These two types of
transformer-based language models show their strength in address-
ing key challenges and have become a quintessential choice in al-
most all NLP tasks (Casola et al., 2022; Chaudhari et al., 2021).
These breakthroughs in methodologies and technologies have revo-
lutionized the field of NLP, thus bringing the thoughts of applica-
tions in biological and biomedical research.

Although there are reviews of transformers in the general do-
main (Kalyan et al., 2021b; Lin et al., 2022; Qiu et al., 2020) and a
survey of transformer-based biomedical pre-trained language mod-
els (Kalyan et al., 2021a), the applications of transformer-based lan-
guage models in the latest bioinformatics research, such as spatial
transcriptomics and multi-omics, have not yet been documented. In
this review, we provide a comprehensive viewpoint of facilitating re-
search in the field of NLP and the applications of transformers in
bioinformatics. We revisit the basics of transformer-based language
models, summarize the latest developments in the transformer-based
language models and then review the applications of transformers in
bioinformatics and biomedical downstream tasks such as sequence
analysis, gene expression, proteomics, spatial transcriptomics, etc.
Last but not least, we discuss the future challenges and opportunities
in using and understanding multi-omics high-throughput sequencing
data. We hope that transformer-based language models not only

benefit the computer science community but also the broader com-
munity of bioinformaticians and biologists, and further provide
insights for future bioinformatics research across multiple disciplines
that are unattainable by traditional methods.

2 Basics of transformer-based language models

Language models are trained in a self-supervised fashion (Liu et al.,
2023). Compared to supervised learning (Hastie et al., 2009), which
usually needs human annotations, language models could use mas-
sive amounts of unannotated corpora from the internet, books, etc.
Language models either take the next word as a natural label for the
context in a sentence or artificially mask a known word and then
predict it (Petroni et al., 2019). The paradigm that uses the unstruc-
tured data itself to generate labels (e.g. the next word or the masked
word in language models) and train supervised models (language
models) to predict labels is called ‘self-supervised learning’ (Howard
and Ruder, 2018). Specifically, because of their parallelism and the
ability to extract correlation across the whole sequences,
transformer-based models achieve state-of-the-art (SOTA) perform-
ance in a variety of important tasks such as machine translation and
question answering (QA) (Pundge et al., 2016). Since there are high
similarities between human language and bioinformatics sequence
data, transformer-based models are becoming one of the most prom-
ising models to tackle the sequence-based problems in bioinformat-
ics (Ofer et al., 2021).

The vanilla transformer model can be divided into two parts: en-
coder and decoder, which have similar basic architectures composed
of a stack of identical blocks (Vaswani et al., 2017). Each block con-
sists of two kinds of sub-layers: the multi-head attention sub-layer
and the position-wise feed-forward sub-layer. Both kinds of sub-
layers are followed by layer normalization. A residual connection
around every sub-layer will be applied in each block to speed up the
training process. The following sections will describe each module
that makes up the transformer model in detail.

2.1 Attention modules
The key innovation in transformer is the multi-head self-attention
layer, which can relate all relevant tokens to better encode every
word in the input sequence (Lin et al., 2017). The self-attention
layer takes a sequence of tokens as input (tokens equivalent to words
in the language) and learns sequence-wide context information.
Multi-head represents multiple simultaneous attention heads.
Figure 2 shows the example process of a single attention head in cal-
culating the first token T1’s output embedding in a sequence com-
posed of four tokens.

Before calculating the attention function, each token embedding
will be transformed into the corresponding query vector, the key
vector of dimension dk and the value vector of the dimension dv by
multiplying with three randomly initialized learnable parameter
matrices WQ; WK and WV . Then, the attention head will compute
the dot products of the query with all keys and divide each
by

ffiffiffiffiffi
dk

p
and apply a softmax function to obtain the weights on these

values (Vaswani et al., 2017). Through this process, the attention
function can be described as mapping a query vector and a set of
key-value pairs to an output vector that contains information for the
entire sequence. As is seen in Figure 2, the output of the attention
function is the weighted sum of these values. The weight assigned to
each value is computed by a compatibility function of the query
with the corresponding key (Vaswani et al., 2017).

In the parallel computation of the attention function, a set of
query vectors is packed into a matrix Q. These key and value vec-
tors are also packed together into matrices K and V. In practice, the
attention function is computed as follow:

Attention Q; K; Vð Þ ¼ softmax
QKTffiffiffiffiffi

dk

p
 !

V: (1)

When being generalized to multi-head attention with
h heads, the results of multiple heads assigned different
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parameters WQ; WK and WV are concatenated, and once again

projected with parameter, resulting in the final values, as depicted as
follows:

MultiHead Q; K; Vð Þ ¼ Concatðhead1; . . . ;headhÞWO

where headi ¼ Attention QWQ
i ; KWK

i ; VWV
i

� �
: (2)

2.2 Position-wise feed-forward networks
Except for the attention sub-layer, each block of the encoder and de-
coder contains a fully connected feed-forward network (FFN)
(Skansi, 2018), which is applied identically to each token. This layer

consists of two linear transformations with rectified linear unit
(ReLU) activation in the middle (Vaswani et al., 2017), where
W1, b1, W2 and b2 are learnable parameters.

FFN xð Þ ¼ max 0; xW1 þ b1ð ÞW2 þ b2: (3)

2.3 Residual connection and layer normalization
Each encoder contains two residual connection and layer normaliza-

tion layers, and they are applied on both multi-head self-attention
and FFN. The calculation formulas are as follows:

LayerNorm XþMutiHeadAttention Xð Þð Þ; (4)

LayerNorm Xþ FeedForward Xð Þð Þ: (5)

X represents the input of multi-head self-attention or FFN, which is

added to the output and forms a residual connection. For the deep
network, the residual connection can help fend against

vanishing and exploding gradients by keeping the original input

Fig. 2. The example illustration of calculating self-attention. (A) The process of computing the output embedding of token T1 in a single attention head. Tiði¼1;2;3;4Þ represents

the embeddings corresponding to the ith token in the input sequence. T 01 is the output corresponding to T1. Each embedding in the input sequence needs to be multiplied with

the three parameter matrices WQ; WK and WV ; respectively to obtain the corresponding query vector, key vector and value vector. (B) The figure complements the process of

generating the ith (i¼ 1,2,3,4) token’s corresponding query vector Qi, key vector Ki and value vector Vi. Each attention head has its own set of three learnable parameter

matrices WQ; WK and WV . (C) If the key vectors of all tokens are concatenated into a matrix K by row and all value vectors are concatenated into a matrix V by row, the

process of calculating T 01 in part A can be expressed as the formula in part C using matrix operations, where KT is the transpose of K and dk is the dimension of the key vector
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(Zhang et al., 2018). Layer normalization can accelerate the training
process of the model by normalizing the output of the former layers
to make it converge faster (Ba et al., 2016).

2.4 Position encodings
Since transformer uses pure self-attention without recurrence or con-
volution to capture connections between tokens, it cannot identify
the order of the tokens in the sequence. Therefore, transformer adds
position encodings to the input embeddings (Liu et al., 2020) to re-
flect the absolute or relative position of the tokens in the sequence.
The absolute position encoding informs the transformer architecture
of the absolute position of each token in the input sequence, while
the relative position encoding acts as a self-attention mechanism,
informing the transformer architecture of the distance between two
tokens (Ke et al., 2021). The input for the first transformer encoder
layer is the sum of the input embedding and the position encoding.

2.5 Encoder and decoder
Using the components above, the encoder encodes the input se-
quence and passes the output intermediate sequence to the decoder,
and the decoder decodes the intermediate sequence and outputs the
sequence we need. The encoder consists of several identical blocks
consisting of one attention sub-layer and a feed-forward layer
(Fig. 1C). The decoder inserts one more attention sub-layer between
the original two sub-layers to perform multi-head attention over the
output of the encoder stack (Fig. 1C).

Decoding the intermediate output of the encoder into a new se-
quence can be considered as a translation process. First, the decoder
takes a special token ‘BEGIN’ as input, combining it with the
encoder’s output sequence to produce a vector after passing through
the inner blocks of the decoder and a linear layer. The length of this
vector is the size of the lexicon. Then, a softmax function is applied
to the output vector to generate a probability distribution, and the
token in the lexicon with the highest probability is the output, which
is also the first token in the final output sequence (Fig. 3).

This output token will be appended to the sequence containing
the ‘BEGIN’ token as the next round of the decoding process’s input.

This process will be repeated, appending the new output into the in-
put sequence. To end the loop, an ‘END’ token is appended to the
lexicon. The loop stops when the output token is ‘END’, resulting in
the complete final output sequence. Because of the extra ‘BEGIN’
token, the decoder’s input is shifted one position to the right
(Fig. 4).

It is worth mentioning that when generating an output token,
the input sequence only contains the tokens before it. When passing
through the first attention layer, the queries, values and keys after
this token will be masked and will not participate in the attention
calculation. The decoder’s input in the current round, which is the
input of the previous round appending the output of the previous
round, generates the vector of the corresponding position after pass-
ing through the masked self-attention layer. This vector will be mul-
tiplied by a transition matrix to obtain the query matrix of the
second attention layer, which is also called the ‘cross-attention layer’
(Fig. 5).

In the cross-attention layer, the key matrices and value matrices
in the attention function are provided by the output sequence of the
encoder, while the query matrix is transformed from the output of
the masked attention layer. Calculating cross-attention is the same
as self-attention, except that the source of the query matrix is differ-
ent. The output of the cross-attention layer also goes through a feed-
forward layer. After that, it will be fed into the last linear layer and
the softmax function to produce the final output of the round.

3 Bioinformatics applications of transformer-

based language models

This section summarizes and compares representative works in dif-
ferent fields of bioinformatics applications (Table 1), lists important
works related to transformer (Fig. 6) and identifies their main
focuses and benefits, e.g. improving model accuracy, reproducibility
and interpretability. The number of transformer-based applications
over the past 3 years (Fig. 7) suggests a growing interest in the field
of bioinformatics.

Fig. 3. The first step of the decoding process. The decoder predicts which token to output with its input and the output of the encoder. The decoder takes a special token

‘BEGIN’ as input, combining it with the encoder’s output to generate the probability distribution vector. The length of this vector is the size of the lexicon, and each dimension

of the output probability distribution vector represents the probability of a certain token in the lexicon. The output vector is then applied to a softmax function to generate a

probability distribution, and the token in the lexicon with the highest probability is the corresponding output, which is also the first token in the final output sequence

Transformer-based language models in bioinformatics 5



Fig. 4. The process of decoder looping to produce the final output one by one, also known as the autoregressive process. In the same way as the first decoding round shown in

Figure 3, each round decoder will generate a predicted probability distribution vector. Predicted tokens generated by ‘BEGIN’ in the first round will be appended to the se-

quence containing the ‘BEGIN’ token as the second round of the decoding process’s input. This process will be repeated, adding the new output into the input sequence.

Because of the extra ‘BEGIN’ token, the decoder’s input is shifted one position to the right. In each decoding round, only the predicted tokens already decoded so far together

with the special token ‘BEGIN’ are received as input to generate the new predicted token. It is worth mentioning these predicted tokens are not always correct, and a mispredic-

tion in the current round may affect the decoding correctness in the subsequent rounds. To end the loop, an ‘END’ token is added to the lexicon. When the output token is

‘END’ the loop stops, resulting in the complete final output sequence

Fig. 5. Structure of the cross-attention layer. The encoder block in this figure refers to a certain block in encoder whose output participate in cross-attention with the decoder.

Masked self-attention refers to the first attention sub-layer in decoder block. Tiði¼1;2;3;4Þ is the ith token’s output of the encoder block shown in this figure and also the ith

token’s input of next encoder block. Kiði¼1;2;3;4Þ and Viði¼1;2;3;4Þ are the key matrix and the value matrix of Ti. Q
0

1 is the corresponding query matrix of T
0

1, which is the first

token’s output of masked self-attention. Cross-attention uses the decoder’s query and the encoder’s keys and values to calculate the attention function, and the output of cross-

attention will be fed into the feed-forward layer in decoder block

6 S.Zhang et al.



Table 1. Summary and comparison of the representative applications of transformer-based language models in different fields of

bioinformatics

Field Paper Pre-trained model? (Y/N) Main focus Data repositories address

Sequence analysis Ji et al. (2021) Y Novel pre-trained bi-directional en-

coder representations that

achieved state-of-the-art results in

predicting promoters and identify-

ing TFBSs

https://github.com/jer

ryj1993/DNABERT

Lee et al. (2021) Y A transformer architecture based on

BERT and 2D CNN to identify

DNA enhancers from sequence

information

https://github.com/khanh

lee/bert-enhancer

Zhang et al. (2021b) Y A transformer architecture based on

BERT and stacking ensemble to

identify RNA N7-

Methylguanosine sites from se-

quence information

NA

Charoenkwan et al. (2021) Y A bi-directional encoder representa-

tion from BERT-based model for

improving the prediction of bitter

peptides from the original amino

acid sequence

http://pmlab.pythonany

where.com/BERT4Bitter

Qiao et al. (2022) Y Prediction of lysine crotonylation

sites by a transfer learning method

with pre-trained BERT models

http://zhulab.org.cn/BERT-

Kcr_models/

Genome analysis Clauwaert et al. (2021) N A prokaryotic genome annotation

method based on the transformer-

XL neural network framework for

identifying TSSs in Escherichia

coli

https://github.com/jdcla/

DNA-transformer

Raad et al. (2022) N A full end-to-end deep model based

on transformer for prediction of

pre-miRNAs in genome-wide data

https://github.com/sinc-lab/

miRe2e

Chen et al. (2022b) N Prediction of EPI in different cell

types by capturing large genome

contexts

https://github.com/biomed-

AI/TransEPI

Baid et al. (2022) N A gap-aware transformer–encoder

for sequence correction trained by

an alignment-based loss

https://github.com/google/

deepconsensus

Mo et al. (2021) Y Prediction of interactions between

regulatory elements by pre-train-

ing large-scale genomic data in a

multi-modal and a self-supervised

manner

NA

Gene expression Avsec et al. (2021) N A portmanteau of enhancer and

transformer to predict gene ex-

pression and chromatin states

from DNA sequences

https://github.com/deep

mind/deepmind-research/

tree/master/enformer

Khan and Lee (2021) N Transformer for the gene expression-

based classification of lung cancer

subtypes that solved the complex-

ity of high-dimensional gene ex-

pression through a multi-headed

self-attention module

NA

Yang et al. (2022) Y Single-cell bi-directional encoder rep-

resentations from transformers for

cell type annotation, new cell type

discovery, handling of batch

effects, and improving model

interpretability.

https://github.com/

TencentAILabHealthcar

e/scBERT

Proteomics Cao and Shen (2021) N A high-throughput Transformer-

based protein function annotator

with both accuracy and

generalizability

https://github.com/Shen-

Lab/TALE

(continued)
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Table 1. (continued)

Field Paper Pre-trained model? (Y/N) Main focus Data repositories address

Rao et al. (2020) Y An alternative to MSA to predict in-

ter-residue correlations in an end-

to-end manner with Transformer

protein language models

https://github.com/face

bookresearch/esm

Rives et al. (2021) Y Learning protein biological structure

and function from UniRef dataset

using pre-trained Transformer

https://github.com/face

bookresearch/esm

Zhang et al. (2021a) N Jointly considering information of all

homologous sequences in MSA to

capture global co-evolutionary

patterns

https://github.com/micro

soft/ProteinFolding/tree/

main/coevolution_

transformer

Elnaggar et al. (2022) Y Understanding the language of life

with transformer-based protein

language models through self-

supervised learning

https://github.com/agemagi

cian/ProtTrans

Brandes et al. (2022) Y A self-supervised deep language

model specifically designed for

proteins to capture local and glo-

bal representations of proteins in a

natural way

https://github.com/nadav

bra/protein_bert

Park et al. (2022) Y A sequence-based pre-trained BERT

model improved linear and struc-

tural epitope prediction by learn-

ing long-distance protein

interactions effectively

NA

Ferruz et al. (2022) Y A pre-trained GPT-based model to

generate sequences similar to nat-

ural proteins from scratch

https://huggingface.co/docs/

transformers/main_

classes/trainer

Castro et al. (2022) N An autoencoder based on transform-

er with a highly structured latent

space trained to jointly generate

sequences and predict fitness

https://github.com/

KrishnaswamyLab/

ReLSO-Guided-

Generative-Protein-

Design-using-

Regularized-

Transformers

Multi-omics Tao et al. (2020) Y Prediction of multiple cancer pheno-

types based on somatic genomic

alterations via the genomic impact

transformer

https://github.com/yifeng

tao/genome-transformer

Jurenaite et al. (2022) Y Applying Transformer-based deep

neural network on mutomes and

transcriptome counting for tumor

type classification

https://github.com/dani

lexn/nebis

Kaczmarek et al. (2021) N The use of graph transformer net-

work (GTN) for cancer classifica-

tion and interpretation

NA

Ma et al. (2021) N Utilizing the heterogeneous graph

transformer framework to infer

cell type-specific single-cell bio-

logical networks

https://github.com/OSU-

BMBL/deepmaps

Spatial transcriptomics Pang et al. (2021) N Usage of Vision Transformer (ViT)

to predict super-resolution gene

expression from histology images

in tumors

https://github.com/

maxpmx/HisToGene

Zeng et al. (2022) N Spatial transcriptomics prediction

from histology jointly through

transformer and graph neural

networks

https://github.com/biomed-

AI/Hist2ST

Biomedical informatics Lee et al. (2020) Y The first pre-trained biomedical lan-

guage representation model for

biomedical text mining

https://github.com/dmis-

lab/biobert

(continued)
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3.1 Sequence analysis
Biological sequence analysis, including DNA, RNA and protein se-
quence analysis, represents one of the fundamental applications of
computational methods in molecular biology. Traditional sequence
analysis methods rely heavily on k-mers frequency (Koonin and
Galperin, 2003b), which is not able to capture distant semantic
relationships of gene regulatory code. Deep learning models like
CNN also have problems capturing semantic dependency within

long-range contexts (Tang et al., 2018), as their capability to ex-
tract local features is limited by the filter size. The RNN-based
models (e.g. LSTM and GRU) are developed to capture long-
range dependency; however, it is difficult for them to perform
large-scale learning due to their limited degree of parallelization.
In addition, existing models generally require large amounts of
labeled data, which is difficult to obtain in bioinformatics research
(Butte, 2001).

Table 1. (continued)

Field Paper Pre-trained model? (Y/N) Main focus Data repositories address

Rasmy et al. (2021) Y Pre-training contextualized embed-

dings on large-scale structured

electronic health records for dis-

ease prediction that used the

International Classification of

Diseases (ICD) codes

https://github.com/

ZhiGroup/Med-BERT

Wang et al. (2021) Y An innovative AlBERT-based causal

inference model of clinical events

https://github.com/

XingqiaoWang/

DeepCausalPV-master

Chen et al. (2021a) Y A powerful alternative to main-

stream medical image segmenta-

tion methods that combined

transformer and U-Net

https://github.com/

Beckschen/TransUNet

Chen et al. (2021b) Y Using ViT for the first time in self-

supervised volumetric medical

image registration

https://bit.ly/3bWDynR

Drug discovery Wang et al. (2019) Y A pioneer pre-training method for

molecular property prediction by

pre-trained on unlabeled SMILES

strings

https://github.com/uta-

smile/SMILES-BERT

Rong et al. (2020) Y A new GNN/Transformer architec-

ture that learned rich molecular

structure and semantic informa-

tion from large amounts of un-

labeled data

https://github.com/tencent-

ailab/grover

Chithrananda et al. (2020) Y Utilizing RoBERTa-based transform-

er for molecular property

prediction

https://huggingface.co/

seyonec

Wu et al. (2022) Y Presenting new pre-training strat-

egies that allowed the model to ex-

tract molecular features directly

from SMILES

https://github.com/wzxxxx/

Knowledge-based-BERT

Li et al. (2022) Y A novel knowledge-guided pre-train-

ing framework of graph trans-

former for molecular property

prediction

https://github.com/lihan97/

KPGT

Huang et al. (2021) N Improving the prediction accuracy of

DTI by knowledge-inspired repre-

sentation, interaction modeling

modules and an augmented trans-

former encoder

https://github.com/kexin

huang12345/moltrans

Kalakoti et al. (2022) N A modular framework that employ-

ing transformer-based language

models for DTI prediction

https://github.com/

TeamSundar/transDTI

Jiang et al. (2022) N An end-to-end deep transformer-

based learning model that used

cancer cell transcriptome informa-

tion and chemical substructures of

drugs to predict drug response

https://github.com/jiangli

kun/DeepTTC

Bagal et al. (2022) Y A small version of the GPT model

for molecular generation

https://github.com/devalab/

molgpt

Grechishnikova (2021) N A de novo drug generation model

based on transformer architecture

https://github.com/dariagre

chishnikova/molecule_

structure_generation

Note: The papers are sorted by their appearance in this review and divided into different categories based on their research field.
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Considering the large amount of unlabeled genomic sequences,
transformer-based pre-trained language models are well-suited
for DNA sequence analysis and have received increasing attention for
their significant improvement over other traditional or deep learning
models. DNABERT (Ji et al., 2021), a novel pre-trained
bi-directional coding representation, used tokenized k-mer sequences
as input for the BERT model (Fig. 8A). DNABERT utilized context in-
formation in DNA sequences and achieved state-of-the-art results in
downstream tasks such as predicting promoters and identifying tran-
scription factor binding sites (TFBSs). Another example is to use the
multi-language model based on BERT by converting DNA sequences
into a numerical matrix of constant size for the prediction of enhancers
(Lee et al., 2021). Compared with the most advanced features in bio-
informatics, BERT-based features increased the sensitivity, specificity,
accuracy and Matthews correlation coefficient (MCC) by 5–10%.

Compared with DNA sequences, RNA sequences provide add-
itional transcription information. While traditional methods still

rely on manually curated RNA sequence features, deep learning
models enable automatic feature extraction (Urda et al., 2017).
BERT-m7G was a transformer model based on BERT and used a
stacking ensemble to identify RNA N7-methylguanosine (m7G) sites
from RNA sequence information (Zhang et al., 2021b). N7-
methylguanosine is one of the most prevalent RNA post-
transcriptional modifications and plays an important role in the
regulation of gene expression. The experimental results showed that
the identification performance of BERT-m7G obviously exceeded
the existing prediction methods, with the accuracy increasing by 3–
20.7% and the MCC improving by 0.06–0.415.

Protein sequence analysis can be regarded as an extension of
DNA sequence analysis (von Heijne, 1992), but it is much more
complicated than DNA sequence analysis because polymers are
composed of 20 amino acids (Karlin and Ghandour, 1985). The
analysis of protein sequences can better capture the relationships be-
tween protein sequences and the spatial structure of proteins and
provide a theoretical basis for further study on protein function and
structure (Findlay et al., 1995; Ponting and Birney, 2005). For ex-
ample, bitter peptides are oligopeptides with a bitter taste usually
produced during food fermentation and protein hydrolysis
(Karametsi et al., 2014), which are useful for drug development
since diluting the bitterness of drugs can increase patients’ willing-
ness to take medicine. BERT4Bitter was proposed to predict bitter
peptides directly from the original amino acid sequence without
using any structural information (Charoenkwan et al., 2021). It was
the first study to identify bitter peptides using the NLP-inspired
model and feature encoding. In another study, Qiao et al. (2022)
established a more effective predictor for protein lysine crotonyla-
tion sites (Kcr), which is one of the most important post-
translational modifications, by pre-training BERT model. The
authors converted each amino acid into a word as the input to the
pre-trained BERT model. The features encoded by BERT were
extracted and then fed to the BiLSTM network (Zeng et al., 2016)
to construct the final model.

Fig. 6. An overview of important works related to TRANSFORMER. Different bioinformatics application models are represented chronologically by different colored lines.

Following the prominent progress in the past years, Transformer in bioinformatics will embrace great advancement in the upcoming years. SOTA, state-of-the-art

Fig. 7. Distribution of selected papers published in recent years. Most papers

(84.1%) were published after 2021, with the highest number of publications regis-

tered in 2021 (23 papers). Qx, xth quarter of the year
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Fig. 8. Several typical models of Transformer applied to bioinformatics including the frameworks of (A) DNABERT, (B) TransEPI, (C) Enformer, (D) TALE, (E) Hist2ST and

(F) ViT-V-Net
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3.2 Genome analysis
Although sequence analysis contributes significantly to biological
discovery, genome analysis is also essential to capture the full reper-
toire of information encoded in the genome (Koonin and Galperin,
2003a). Genome analysis explains the appearance of tumors or phe-
notypes from the DNA level, including gene mutations, deletions,
amplifications (Feuk et al., 2006) and epigenetic modifications (e.g.
DNA methylation) (Nikpay et al., 2015; Portela and Esteller, 2010).

Several scratch-trained methods based on the Transformer model
have been developed to this end. For example, Clauwaert et al.
(2021) proposed a prokaryotic genome annotation method based on
the Transformer-XL neural network framework, which was
designed to identify transcription start sites (TSSs) for the transcrip-
tion process in Escherichia coli. Beyond the application to genome
annotation, some studies also applied Transformers to the predic-
tion of small-RNA sequences. For example, MiRe2e, a full
transformers-based end-to-end deep model, was developed to pre-
dict pre-miRNAs (Raad et al., 2022). MiRe2e showed its advantages
in two aspects: (i) It can receive raw genome-wide data without any
preprocessing or secondary structure prediction; (ii) It identified all
pre-miRNA sequences in the genome with high accuracy and recall.
In another study, TransEPI (Chen et al., 2022b) was developed
based on enhancer–promoter interaction (EPI) datasets derived from
Hi-C or ChIA-PET data to predict EPI in different cell types by cap-
turing large genome contexts (Fig. 8B). This model not only
achieved state-of-the-art results on experimental datasets [the area
under the precision-recall curve (auPRC) of TransEPI increased by
an average of 28.1% compared to the second-best baseline] but has
also been extended to the interpretation of disease-related non-cod-
ing mutations. Last but not least, Google’s Andrew Carroll research
group recently developed DeepConsensus, which uses the
alignment-based loss to train gap-aware transformer-encoders for
sequence correction (Baid et al., 2022). Compared to methods using
pbccs (standard approach to consensus generation), DeepConsensus
reduced errors in reads (small genome fragments from sequencing
sampling) by 41.9%, and improved the adjacency, completeness and
correctness of genome assembly.

In addition, the Transformer-based pre-trained models were also
used to predict the interactions between regulatory elements. One
example is GeneBERT (Mo et al., 2021). It was proposed to address
the problem that traditional methods rarely consider the interactions
among multiple regulatory elements in the regulatory genome.
GeneBERT was pre-trained using large-scale genomic data in a
multi-modal and self-supervised manner, in which three pre-training
tasks: sequence pre-training, region pre-training and sequence-
region matching, were proposed to improve the robustness and gen-
eralization ability of the model.

3.3 Gene expression
Gene expression data (Brazma and Vilo, 2000), like RNA-
sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq)
(Kolodziejczyk et al., 2015; Ozsolak and Milos, 2011), has been ex-
tensively studied to better understand complex diseases and to iden-
tify biomarkers that can guide therapeutic decision-making
(Goeman and Bühlmann, 2007). They have substantial applications
in clinical medical diagnosis, drug efficacy judgment and revealing
the mechanism of disease (Rotter et al., 2010; Rung and Brazma,
2013).

To examine how non-coding DNA determines gene expression
in different cell types, DeepMind proposed a noteworthy model
Enformer (Avsec et al., 2021). Due to the limitations of previous
convolutional operations in modeling the effects of distal enhancers
and insulators on gene expression, Enformer introduced the trans-
former structure (Fig. 8C), greatly increasing the receptive field of
the network (from 20 to 100 kb). Enformer not only greatly
improved the accuracy of predicting gene expression from DNA
sequences, with the mean correlation increasing from 0.81 to 0.85,
but also represented an important step forward in human under-
standing of the complexity of genome sequences. Furthermore,
Enformer predicted EPI directly from DNA sequences by leveraging
the self-attention mechanism and provided a more accurate

prediction of mutation effects through direct mutation analysis and
population eQTL studies (Liu et al., 2022).

In addition to predicting the effect of non-coding DNA on gene
expression, transformer-based models have been widely used to pre-
dict cancer subtypes according to gene expression data. Gene trans-
former used the multi-headed self-attention module to solve the
complexity of high-dimensional gene expression for joint classifica-
tion of lung cancer subtypes (Khan and Lee, 2021). Compared with
traditional classification algorithms, the proposed model achieved
an overall performance improvement in all evaluation metrics, with
100% accuracy and zero false-negative rates on most datasets.

scRNA-seq is a revolutionary technology in the life science field.
One of the latest studies innovatively proposed scBERT model for
single-cell annotation (Yang et al., 2022). It was the first time to
apply Transformer in scRNA-seq data analysis. Following BERT’s
pre-training and fine-tuning paradigm, scBERT reused large-scale
unlabeled scRNA-seq data to accurately capture the expression in-
formation of a single gene and the gene–gene interactions and
revealed single-cell type annotation with high interpretability, gener-
alization and stability.

3.4 Proteomics
The essential task of proteomics is to understand protein dynamics
in complex systems and diseases (Larance and Lamond, 2015; Rix
and Superti-Furga, 2009). Protein sequences can be viewed as a con-
catenation of letters from the amino acids, analogously to human
languages. These letters form secondary structural elements
(‘words’), which assemble to form domains (‘sentences’) that under-
take a function (‘meaning’) (Ofer et al., 2021). With the extraordin-
ary advances in the NLP field in understanding and generating
language with human-like capabilities, some language models open
a new door to figuring out protein-related problems from sequences
alone, such as protein sequence representation, post-translational
modifications, protein function annotation and protein design.

Especially, transformer has served as a key technique for
addressing various aspects of proteomics data analysis. The work of
Cao and Shen (2021) exemplified the application of transformer to
protein function annotation, a critical step in identifying the overall
functional distribution of differentially expressed proteins.
Specifically, the model obtained embedding by using sequence
inputs, hierarchical function labels and their joint similarity to meas-
ure the contribution of each amino acid to each label. The final
model was shown to be a high-throughput protein function annota-
tor with high accuracy and generalizability (Fig. 8D).

The measurement of amino acid proximity of proteins is called
the inter-residue contact map, which well characterizes the struc-
tural information of proteins. Most of the top-performing models
for protein contact prediction use multiple sequence alignment
(MSA), which improves protein 3D structure prediction by analyz-
ing residue co-evolution information in sequences. Facebook AI
Research proposed ESM-1b (Rao et al., 2020), a method alternative
to MSA using the transformer to predict inter-residue correlations in
an unsupervised manner. Subsequently, they applied ESM-1b to the
UniRef dataset (250M protein sequence) for biochemical properties
analysis, secondary and tertiary structure prediction and mutation
analysis to fully explore the rich information contained in protein
sequences (Rives et al., 2021). Since the prevalence of non-
homologous residues and gaps in MSA may lead to erroneous esti-
mation of residue co-evolution, Co-evolution Transformer (CoT)
was proposed to reduce the impact of non-homologous information
(Zhang et al., 2021a). CoT selectively aggregated features from dif-
ferent homologous sequences by assigning smaller weights to non-
homologous sequences or residue pairs. By jointly considering the
information of all homologous sequences in MSA, CoT was able to
capture global co-evolutionary patterns.

There are some important works related to protein sequence
embedding in recent years (Alley et al., 2019; Elnaggar et al., 2022;
Heinzinger et al., 2019; Unsal et al., 2022). Elnaggar et al. (2022)
proposed to make transformer-based protein language models cap-
ture constraints relevant for protein structure and function by trans-
fer learning (using trained embeddings as input to subsequent
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supervised training). The researchers trained two auto-regressive
models (Transformer-XL and XLNet) and four auto-encoder models
(BERT, ALBERT, ELECTRA and T5) on large-scale protein sequen-
ces and tested both residue-level (3-state accuracy Q3¼81–87%)
and protein-level (10-state accuracy: Q10¼81%, 2-state accuracy
Q2¼91%) prediction tasks using the embeddings obtained from
the language models above, and found that ProtT5 fine-tuned on
UniRef50 without MSA outperformed ESM-1b and achieved the
best performance.

Other transformer-based pre-trained models have also been
widely used in proteomics research. ProteinBERT is a model specif-
ically designed for proteins (Brandes et al., 2022). The pre-training
scheme combined language modeling with gene ontology (GO)
(Ashburner et al., 2000; Stevens, 2000) annotation prediction.
ProteinBERT aimed to capture local and global representations of
proteins in a natural way, which allowed end-to-end processing of
these types of input and output, making the model efficiently and
flexibly adapt to long sequences. EpiBERTope (Park et al., 2022) is
a sequence-based pre-trained BERT model to predict both linear and
structural epitopes. Epitopes are immunogenic regions of antigens
that can be recognized by antibodies in a highly specific manner and
trigger immune responses. EpiBERTope used a multi-headed atten-
tion mechanism to construct global dependencies for each amino
acid in the protein sequences. In the fine-tuning stage, both linear
and structural epitopes datasets were the input of EpiBERTope.

Beyond the applications mentioned above, transformer-based
generative models began to be used for protein design in recent stud-
ies. Inspired by generative transformer-based language models (such
as the GPT-X family), ProtGPT2 (Ferruz et al., 2022) could generate
sequences similar to natural proteins from scratch and thereby pos-
sesses the potential to solve many biomedical and environmental
problems. Castro et al. (2022) proposed Regularized Latent Space
Optimization (ReLSO), which combined the powerful encoding
ability of the model with the capacity to generate low-dimensional
latent representations with rich information. By simultaneously opti-
mizing protein sequence generation and fitness landscape (Romero
and Arnold, 2009) prediction, a latent space that contained rich in-
formation about sequence and fitness was explicitly created. In add-
ition, the authors mentioned that ReLSO-like structures could be
applied to other biomolecules such as DNA and RNA.

3.5 Multi-omics
The multi-omics analysis aims to better understand biological regu-
lation by combining different types of omics data (Yang et al.
2019a). With the development of high-throughput sequencing tech-
nology, there is a growing interest in combining genomics with tran-
scriptomics, proteomics and metabolomics together to understand
the disease pathways and processes as a single type of omics data
cannot capture the entire landscape of the complex biological net-
works (Castro-Vega et al., 2015; Kang et al., 2022).

The transformer-based model provides a new perspective for the
analysis of various omics data in terms of diseases, while most con-
ventional methods rarely take the relationships between different
omics levels into account. To this end, Tao et al. (2020) proposed
the genomic impact transformer (GIT). The GIT fine-tuned gene
embeddings that were pre-trained by the ‘Gene2Vec’ algorithm in
order to infer how somatic genomic alterations (SGAs) affect the
function of cellular signaling systems and thus cause cancer by mod-
eling the statistical relationship between SGAs events and tumor dif-
ferentially expressed genes (DEGs). A recent article presented
SetQuence and SetOmic (Jurenaite et al., 2022), which applied
transformer-based deep neural networks on mutome and transcrip-
tome together, showing superior accuracy and robustness over pre-
vious baselines (including GIT) on tumor classification tasks.

Several applications in multi-omics made use of graph trans-
former networks (GTN) (Yun et al., 2019). For instance, a novel
method for cancer classification and interpretation (Kaczmarek
et al., 2021) could correctly model and interpret the interaction and
biological communication between miRNAs and mRNAs to dis-
cover important miRNA-mRNA cancer pathways. Notably, al-
though GTN was not superior to other baselines like GCN (Zitnik

et al., 2018), SVM (Cortes and Vapnik, 1995) and MLP (Kothari
and Oh, 1993), it provided a high degree of interpretation of the
results, as the attention of GTN could identify potential targeting
pathways and biomarkers, which is almost impossible to be
achieved by other models. DeepMAPS was a deep learning-based
single-cell multi-omics data analysis platform that utilized the het-
erogeneous graph transformer framework to infer cell type-specific
single-cell biological networks (Ma et al., 2021). DeepMAPS can in-
clude all cells and genes in a heterogeneous graph to infer cell–cell,
gene–gene and cell–gene relationships simultaneously.

3.6 Spatial transcriptomics
Spatially resolved transcriptomics has experienced significant pro-
gress in the biomedical research field with advances in imaging and
next-generation sequencing technology (Reis-Filho, 2009). The rela-
tionship between cells and their relative positions in tissue samples is
crucial for identifying intercellular communication networks and
global transcriptional patterns, and understanding disease path-
ology. While single-cell transcriptome sequencing techniques ad-
dress the issue of cell heterogeneity and allow us to identify cellular
variants that play key roles in diseases (Faridani et al., 2016), they
cannot be targeted to specific spatial positions, resulting in the ex-
ploration of cell functions that are not yet particularly precise.
Spatial transcriptomics not only provides information on the tran-
scriptome data of the subject, but also locates its spatial location in
the tissue, which is of great significance and thus provides a tremen-
dous opportunity for many research fields such as oncology, neuro-
science, immunology and developmental biology (Chen et al.,
2022a).

Transformer-based language models have been applied on this
front to predict cell composition and gene expression in different
areas of tissue. One example is HisTogene (Pang et al., 2021), which
employed Vision Transformer (ViT) (Dosovitskiy et al., 2021), a
state-of-the-art method for image recognition, to predict super-
resolution gene expression from hematoxylin and eosin (H&E)-
stained histology images. The model demonstrated favorable
performance across datasets of 32 HER2þ breast cancer samples
both in gene expression prediction and clustering tissue regions
using the predicted expression. Based on this study, to capture 2D
visual features of histology images and better highlight the explicit
neighborhood relationships of image patches, the Hist2ST (Zeng
et al., 2022) model was developed for predicting RNA-seq expres-
sion from histology images (Fig. 8E). The model cropped histology
images into patches at sequencing spots, learned 2D features in the
image patches by convolutional operations and then captured global
spatial dependencies between features using the transformer module
while capturing explicit neighborhood relationships by graph neural
networks (GNN) (Scarselli et al., 2009). This study also proposed a
self-distillation mechanism to mitigate the effects of small spatial
transcriptomics data effectively.

3.7 Biomedical informatics
Biomedical informatics uses theories and techniques of computer
science and other related disciplines’ research methods for develop-
ing innovative research and application in biomedical and clinical
medicine (Boguski and McIntosh, 2003; Sarkar, 2010). The success
of transformer-based language models has led researchers to focus
on biomedical text and medical image processing, which again
shows the superior performance of the Transformer.

One of the applications in biomedical text processing is
BioBERT (Lee et al., 2020), the first pre-trained BERT model for
biomedical corpora. BioBERT initialized weights from general do-
main pre-trained BERT, trained on a large-scale biomedical corpus
and fine-tuned on biomedical text mining tasks including NER
(Marrero et al., 2013), RE (Zhang et al., 2017) and QA (Calijorne
Soares and Parreiras, 2020). To enable deep learning models to pre-
dict disease status using limited training data, another study pro-
posed Med-BERT (Rasmy et al., 2021), a contextualized embedding
model for pre-training on structured electronic health records
(EHRs) data. In contrast to other medical pre-trained models that
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were trained on free text, this model was characterized by using the
International Classification of Diseases (ICD) codes. After fine-
tuning experiments on pancreatic cancer prediction and heart failure
prediction in diabetic patients, Med-BERT was validated to be gen-
eralized on different sizes of fine-tuned training samples, which can
better meet disease prediction research with small training datasets.
Another promising application based on biomedical text data is an
ALBERT-based model called InferBERT to predict clinical events
and infer the causality (Wang et al., 2021), which is a prerequisite
for deployment in drug safety. As evaluated on two FDA Adverse
Event Reporting System cases, the results showed that the number
of causal factors identified by InferBERT for analgesics-related acute
liver failure and Tramadol-related mortalities was 1.87 and 1.16
times higher than the second-best baseline, respectively.

Transformer has not only dominated the NLP field but has re-
cently revolutionized the computer vision field (Han et al., 2023;
Khan et al., 2022). Specifically, ViT applied Transformer to image
classification tasks and achieved SOTA performance with less com-
putational expense than other methods (Dosovitskiy et al., 2021).
Subsequent to this progress, TransUNet pioneered the pre-trained
ViT for 2D medical image segmentation (Chen et al., 2021a). It not
only encoded image features as sequences to extract global context
but also exploited low-level details for precise localization through a
U-Net (Ronneberger et al., 2015) hybrid network design. As a
powerful alternative to mainstream medical image segmentation
methods based on fully convolutional neural networks, TransUNet
outperformed prior tools on tasks such as synapse multi-organ seg-
mentation and cardiac segmentation, e.g. average dice score gained
a range from 1.91% to 8.67%. ViT-V-Net (Chen et al., 2021b) used
ViT for the first time in self-supervised volumetric medical image
(i.e. 3D images) registration (Fig. 8F). Combining the advantages of
Transformer and V-Net (Milletari et al., 2016), the network learned
long-distance relationships between points in images while main-
taining the flow of localization information.

3.8 Drug discovery
Despite progress in technology and enhanced knowledge of human
disease, the translation of these advances into therapeutic benefits
has been far slower than expected. The challenges facing the global
pharmaceutical industry are multifold, including high attrition rates,
increased time to bring new drugs to the market and changing regu-
latory requirements, which can all contribute to higher costs. A key
issue in the early stage of drug design and discovery is the prediction
of molecular properties and interactions (Lo et al., 2018). While
deep learning models have been widely applied to this end (Feinberg
et al., 2018; Liu et al., 2019a; Wu et al., 2018), the scarcity of
labeled data remains a fundamental obstacle to accurate and effi-
cient molecular property prediction. For this reason, large amounts
of unlabeled data have been considered to improve the prediction
performance on small-scale labeled data with the strength of
transformer-based self-supervised pre-training.

Several momentous pre-training methods for molecular property
prediction have been proposed, including SMILES-BERT (Wang
et al., 2019), GROVER (Rong et al., 2020), ChemBERTa
(Chithrananda et al., 2020), K-BERT (Wu et al., 2022) and KPGT
(Li et al., 2022). SMILES-BERT was pre-trained on large-scale un-
labeled data by a Masked SMILES Recovery task by converting mo-
lecular formulas into SMILES strings (a kind of single-line text
representation for the structure of molecular compounds) as input
sequences (Wang et al., 2019). The pre-trained model was fine-
tuned with the labeled datasets and achieved excellent results on
many datasets. However, SMILES-BERT lacks model interpretabil-
ity since SMILES is not topology-aware and cannot explicitly encode
the structural information of molecules. GROVER integrated
Dynamic Message Passing Networks (Gilmer et al., 2020) from
GNNs and long-range residual connection into Transformer archi-
tecture to provide a more expressive molecular encoder and demon-
strated clear improvement in molecular classification and regression
tasks (Rong et al., 2020). ChemBERTa utilized RoBERTa-based
Transformer and evaluated the model with ROC–AUC metrics for
MoleculeNet tasks (Chithrananda et al., 2020). Although the

experimental result was not state-of-the-art, ChemBERTa could
scale the pre-training dataset well, with powerful downstream per-
formance and practical attention-based visualization modality. K-
BERT (Wu et al., 2022) presented new pre-training strategies that
allowed the model to extract molecular features directly from
SMILES. The atomic feature prediction task enabled K-BERT to
learn the initial atomic information that was extracted manually in
graph-based approaches, the molecular feature prediction task
enabled K-BERT to learn the molecular descriptor/fingerprint infor-
mation that was extracted manually in descriptor-based approaches,
and the contrastive learning task enabled K-BERT to better ‘under-
stand’ SMILES through making the embeddings of different
SMILES of the same molecule more similar. To alleviate the issues
of the unclear definition of pre-training tasks and limited model cap-
acity, Li et al. (2022) introduced KPGT, i.e. Knowledge-guided Pre-
training of Graph Transformer for molecular graph representation
learning and achieved state-of-the-art performance. KPGT proposed
the Line Graph Transformer, which is a high-capacity model to em-
phasize the importance of chemical bonds and model the structural
information of molecular graphs as line graphs. A knowledge-
guided pre-training strategy based on generative self-supervised
learning was then designed to exploit the molecular descriptors/fin-
gerprints to guide the model to obtain plentiful structural and se-
mantic information from large-scale unlabeled molecular graphs.

In addition to its role in molecular property prediction, trans-
former has been used in a wide range of applications to predict the
interaction between biomolecules and compounds, e.g. drug–target-
ing interaction (DTI), which is a fundamental task for in silico drug
discovery. Huang et al. (2021) proposed Molecular Interaction
Transformer (MolTrans) to improve the accuracy of DTI prediction.
With knowledge-inspired representation, interaction modeling mod-
ules and an augmented transformer encoder, MolTrans could ex-
tract semantic relationships between substructures from large
amounts of unlabeled biomedical data. A recent study presented
TransDTI (Kalakoti et al., 2022), a modular framework that
employs transformer-based language models to predict DTIs.
TransDTI outperformed other descriptors and existing models
including MolTrans. More recently, DeepTTA was released, which
used cancer cell transcriptome information and chemical substruc-
tures of drugs to predict drug response (Jiang et al., 2022). The
model utilized transformers to mine drug features from substruc-
tures and a four-layer neural network to predict the transcriptomic
data of anticancer drug response, making it easier to find effective
cancer therapeutic drugs.

The generative models can produce molecules similar to but dif-
ferent from those in the training set by learning the distribution of
the molecules in the training set. Another important development is
that the transformer-based generative modeling brings new ideas to
drug design. MolGPT is a small version of the GPT model for mo-
lecular generation (Bagal et al., 2022). The model used masking self-
attention mechanisms to make it easier to capture the long-range
dependencies. In order to reduce the dependence on prior know-
ledge, such as the physical and chemical characteristics of proteins
in the process of drug discovery, Grechishnikova (2021) proposed a
de novo drug generation model based on transformer architecture.
The goal of this model is to generate realistic lead compounds only
using the amino acid sequence information of the target protein.

4 Challenges and opportunities

In this subsection, we discuss several key challenges and opportuni-
ties when applying transformer-based language models in bioinfor-
matics research.

4.1 Heterogeneous training data
The rapid development of various types of omics technologies repre-
sented by high-throughput sequencing and mass spectrometry (Noor
et al., 2021) has made bioinformatics research obtain powerful data
as input, with the result that the input of transformer in bioinfor-
matics is not the same as it was originally applied in NLP. Instead,
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there is heterogeneous information, including text, code, graphs, etc.
To fully capture the information in these heterogeneous data, both
in-depth data preprocessing and model adaption may be needed. For
instance, biological sequence and genomic feature information is
generally textual, e.g. in FASTQ, BED and SRA formats. Such data
can be directly fed to the transformer by word embedding or charac-
ter embedding techniques (Chen et al., 2022b; Ji et al., 2021; Rives
et al., 2021); patient visit information (including disease, medication
and clinical records) is represented as sequences of codes, such as
EHR, ICD, where the code sequences are mapped to vector sequen-
ces in the application (Li et al., 2020; Meng et al., 2021; Rasmy
et al., 2021); the biomedical field involves images that are generally
reshaped into sequences of patches for tokenization and mapped
into a latent space using a trainable linear projection (Chen et al.,
2021a, b).

Furthermore, much more attention should be paid to multimodal
learning (MML). Recently, the studies of MML with Transformer
have made great progress in the field of NLP and computer vision
(Chen et al., 2020; Lu et al., 2019; Zheng et al., 2021). Since
Transformer can work in a mode-independent manner, it can ex-
tract and related information from multimodal data by fusion (or
alignment) of the input token embeddings of self-attention (Radford
et al., 2021; Xu et al., 2022). Making use of biomedical codes, med-
ical images, waveforms and genomics in pre-training models would
be beneficial but requires in-depth studies of multimodal
transformers.

4.2 Computational expense
The large amount of high-throughput sequencing data has led to the
fact that many labs currently spend more on storage and computa-
tion, and the calculation and mining of massive amounts of data
have become a major bottleneck for downstream studies. The
powerful performance of the transformer comes largely from self-
attention, which leads to the huge computational expense and
makes transformer unable to model long sequences. Many efforts
have been made to improve the transformer for this problem:

1. Improvements based on recursive connection: Transformer-XL

(Dai et al., 2019) proposed segment-level RNN mechanism and

relative positional encoding to model long-distance dependence.

2. Improvements based on sparse attention: For example,

Longformer (Beltagy et al., 2020) proposed sliding windows,

dilated sliding windows and global attention strategies to reduce

the complexity of the model; Big Bird (Zaheer et al., 2020)

added random attention and introduced prior knowledge to

limit the scope of attention and enhance efficiency; Reformer

(Kitaev et al., 2020) computed the Q and K matrices using the

same linear layer parameters and calculated the attention score

separately for each query, changing the storage expense to the

square root level of the original.

3. Improvements based on low-rank decomposition: Linformer

(Wang et al., 2020) proposed singular value decomposition of

the calculated attention matrix to transform the complexity

from square to linear.

4. Improvements based on linear attention: Such as Linear

Transformer (Katharopoulos et al., 2020) and Performer

(Choromanski et al., 2021) replaced softmax with other map-

pings, making the multiplication complexity of Q, K and V

matrices OðNÞ.

In addition, Zhang et al. (2020) proposed Scale-dot Product
Attention for dimensionality in TensorCoder, which reduced the
computational expense from OðN2dÞ to OðNd2Þ. When the se-
quence length (N) is greater than the word vector dimension (d), it
can reduce the costs. Given the increasing volume of data and the
complexity of analysis, developing more efficient transformer mod-
els and architectures will be another crucial direction not only for
machine learning but also for bioinformatics research.

4.3 Model interpretability
A common criticism of deep learning models is their lack of inter-
pretability. However, the model interpretability analysis is particu-
larly vital when the dimension of original features is too high.
Especially in the field of bioinformatics, gaining insight from the
model is critical since having an interpretable model of a biological
system may lead to hypotheses that can be validated experimentally.
The self-attention mechanism in Transformer has notable advan-
tages in this direction. For example, through the analysis of atten-
tion maps, DNABERT (Ji et al., 2021) could visualize important
areas that contributed to model decision-making, thereby improving
the interpretability of the model. Expect for prediction, DNABERT
could directly rank the importance of the input nucleotide molecules
and analyze the relationship between the input sequence contexts,
resulting in better visualization information and accurate motifs ex-
traction. Most of the attention heads of the Transformer-XL-based
network architecture (Clauwaert et al., 2021) could successfully
identify and characterize transcription factors’ binding sites and
consensus sequences, which showed that transformer has unique po-
tential for genome annotation tasks and biological significance ex-
traction. Reflecting the contribution of each gene and the
interaction between gene pairs by self-attention mechanism, scBERT
(Yang et al., 2022) can obtain the top attention genes corresponding
to a specific cell type, which is important for cell type annotation.
The attention mechanism in DeepMAPS enhanced biological inter-
pretability by fully capturing complex molecular mechanisms and
cellular heterogeneity (Ma et al., 2021). And the attention of GTN
could identify potential miRNA-mRNA targeting pathways and bio-
markers, which is not easy or even impossible to be achieved by
other models (Kaczmarek et al., 2021). Interpretability makes the
model itself, rather than results or data, become the source of know-
ledge. How to better utilize the self-attention mechanisms to demon-
strate the biological insight behind the models will become one of
the most desirable improvements in transformer-based applications
in bioinformatics.

5 Conclusion

The recent development of transformer-based language models has
substantially enriched the NLP field with novel architectures of self-
attention that can greatly improve model accuracy, efficiency and
interpretability. As a new potential force, transformer-based models
have brushed up on SOTA performance with a large margin in most
bioinformatics tasks. For example, the precision of GeneBERT in
promoter classification, TFBS classification and disease risks estima-
tion tasks was 0.130, 0.674 and 0.510 higher than that of the
second-best method, respectively; the accuracy of scBERT in the pre-
diction of novel and known cell types increased by 0.155 and 0.158,
respectively; ESM-1b increased precision on secondary structure and
contact predictions by 0.092 and 0.279; InferBERT almost doubled
the number of identified causal factors on acute liver failure (from
23 to 43). Although several models did not reach SOTA in terms of
evaluation metrics, such as GTN and ChemBERTa, they also made
significant breakthroughs, and they were still innovative for other
properties, such as the robustness to high-dimensional, small sample
size and heterogeneous data.

Nevertheless, the development and application of transformers
in bioinformatics are still in their infancy. There are many directions
for further exploration, such as developing better pre-training meth-
ods, improving model flexibility, standardizing benchmarks and
mitigating bias. Research in these directions will improve the ana-
lysis and interpretation of transformer-based models, and help the
research community to utilize various biological data effectively. We
hope this review article sparks thoughts on transformer-based lan-
guage models across multiple disciplines and will inspire future re-
search and applications that revolutionize biological and biomedical
research and open up new avenues for the diagnosis and treatment
of human diseases.
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